[1]田昱,许曼佳,张旭东,等.锂离子电池硅负极材料充锂过程的跨尺度模拟方法[J].探测与控制学报,2021,43(03):77.[doi:.]
 TIAN Yu,XU Manjia,ZHANG Xudong,et al.Multiscale Simulation of Lithium Ion Battery Si Anode Material Li Intercalation Process[J].,2021,43(03):77.[doi:.]
点击复制

锂离子电池硅负极材料充锂过程的跨尺度模拟方法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
43
期数:
2021年03
页码:
77
栏目:
出版日期:
2021-08-01

文章信息/Info

Title:
Multiscale Simulation of Lithium Ion Battery Si Anode Material Li Intercalation Process
文章编号:
1008-1194(2021)03-0077-05
作者:
田昱1许曼佳1张旭东2邓俊楷2李世文3王莹澈3
1.西安机电信息技术研究所,陕西 西安 710065;2.西安交通大学,陕西 西安 710049;3.机电动态控制重点实验室,陕西 西安 710065
Author(s):
TIAN Yu1 XU Manjia1 ZHANG Xudong2 DENG Junkai2 LI Shiwen3 WANG Yingche3
1.Xi’an Institute of Electromechanical Information Technology, Xi’an 710065, China;2.Xi’an Jiaotong University, Xi’an 710049, China;3.Science and Technology on Electromechanical Dynamic Control Laboratory, Xi’an 710065, China
关键词:
锂离子电池硅负极跨尺度模拟第一性原理有限元模拟
Keywords:
lithium-ion battery silicon anode multiscale Simulation first principles calculation finite element simulation
分类号:
TM911
DOI:
.
文献标志码:
A
摘要:
针对硅(Si)负极材料充锂(Li)过程产生的中间相如何引起其失效,依然缺少微观结构、性能与宏观现象上的关联,提出对Si负极材料充Li过程进行多尺度的计算模拟,建立多尺度耦合模型。该方法利用第一性原理计算与有限元模拟的跨尺度方法,揭示了锂离子电池Si负极充放电过程中原子结构及相稳定性的变化,计算了形成的不同中间相化合物的物理性能。随后利用有限元方法从介观尺度揭示了Si负极材料充Li过程的变形行为。跨尺度模拟结果表明,Si负极材料在充电过程中因形成不同中间相化合物会导致明显的体积膨胀。Si负极材料的膨胀会引起临近颗粒接触、挤压从而产生应力集中甚至发生失效,进而会降低电池的循环性能。
Abstract:
Lithium(Li) intercalation process is an important and complicated process for Silicon(Si) anode material. It is generally believed that the Si anode material will undergo a large volume change when it is charged with Li, which is the main reason for the failure of the Si anode during the long-term charge and discharge process. However, current research still lacks the correlation between the microstructure performance and macroscopic phenomenon of how the intermediate phase generated during the Li charging process of Si anode material causing its failure. In this paper, a multi-scale calculation and simulation of the Li flushing process of Si anode material were carried out, and a multi-scale coupling model was established. First, based on the first-principles calculations of density functional theory, an atomic model of the Si anode was established, and the physical properties of the Si anode material for charging and discharging Li ions were theoretically calculated. Subsequently, a representative volume element model was constructed by using the finite element method to study the stress evolution during the evolution of each mesophase. This study intuitively revealed the microstructure evolution and mesoscopic deformation behavior of the Si anode material during the Li charging process.

参考文献/References:

[1]吴宇平. 锂离子电池:应用与实践[M]. 北京:化学工业出版社材料科学与工程出版中心, 2004.
[2]高鹏飞, 杨军. 锂离子电池硅复合负极材料研究进展[J]. 化学进展, 2011, 23 (Z1): 264-274.
[3]戴永年, 杨斌, 姚耀春, 等. 锂离子电池的发展状况[J]. 电池, 2005, 35 (3): 193-195.
[4]JI L, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4 (8): 2682-2680.
[5]CHEN L, XIE X, WANG B, et al. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode[J]. Materials Science & Engineering B, 2006, 131 (1/3): 186-190.
[6]GU X, TIAN W, TIAN X, et al. Improving cycling performance of si-based lithium ion batteries anode with se-loaded carbon coating[J]. Acs Applied Energy Materials, 2019,2(7):5124-5132.
[7]肖钰, 梁晓杜,廖丽霞, 等. 锂离子电池硅负极材料性能改进的研究进展[J]. 化工新型材料, 2020, 571(4): 9-12.
[8]文钟晟, 王可, 解晶莹, 等. 锂离子蓄电池高容量含硅负极材料研究进展[J]. 电源技术, 2004, 28(11): 719-722.
[9]杜霞, 薛卫东, 赵睿, 等. 石墨烯/硅负极材料的制备及其电化学性能的研究[J]. 化工科技, 2013, 15(5): 17-23.
[10]马增胜, 周益春, 刘军, 等. 锂离子电池硅负极材料衰退机理的研究进展[J]. 力学进展, 2013,39(4):140-144.
[11]徐宇虹. 锂离子电池硅负极的失效行为与性能改进[D]. 哈尔滨:哈尔滨工业大学, 2010.
[12]SHEN X, TIAN Z, FAN R, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018,27(1):1067-1090.
[13]汤红. 锂离子电池硅负极材料制备及其循环稳定性能研究[D]. 石家庄:河北科技大学, 2012.
[14]孟玉凤. 新型纳米硅电极的构筑及嵌脱锂性能研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
[15]GUO Z P, WANG J Z, LIU H K. Study of silicon/polypyrrole composite as anode materials for Li-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 448-451.
[16]CHEN Y, PENG H, CHEN LF, et al. Preparation and electrochemical properties of silicon-carbon anode materials with three-dimensional pore structure[J]. Chinese Battery Industry, 2018,38(4):118-121.
[17]WANG X, WANG J, et al. Influence of degree of substitution of carboxymethyl cellulose on high performance silicon anode in lithium-ion batteries[J]. Electrochemistry, 2019,87(1):94-99.
[18]SHEN D, YANG S B, SUN W, et al. Calculation of lithium insertion properties and elastic properties for Si-Li alloy based on first-principles calculations[J]. Journal of Atomic & Molecular Physics, 2017,34(1):149-154.
[19]HU R, ZHOU J. A DFT study of Li adsorption on surface of Si clusters anchored N-doped defective graphene composite[J]. Applied Surface Science, 2018,451(1):789-796.

备注/Memo

备注/Memo:
收稿日期:2021-01-24
基金项目:自修复电池基础技术项目资助(JCKY2018208C021)
作者简介:田昱(1979-),男,宝鸡扶风人,工程师。
更新日期/Last Update: 2021-08-04