[1]陈砚圃,张介秋.周期信号均值型参数的矩形卷积窗加权测量[J].探测与控制学报,2020,42(03):51.[doi:.]
 CHEN Yanpu,ZHANG Jieqiu.Measurement and Analysis of Periodic Signal Parameters Based on Rectangular Convolution Window Weighting [J].,2020,42(03):51.[doi:.]
点击复制

周期信号均值型参数的矩形卷积窗加权测量()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
42
期数:
2020年03
页码:
51
栏目:
出版日期:
2020-06-15

文章信息/Info

Title:
Measurement and Analysis of Periodic Signal Parameters Based on Rectangular Convolution Window Weighting
文章编号:
1008-1194(2020)03-0051-06
作者:
陈砚圃1张介秋2
1.西京学院信息工程学院,陕西 西安 710123;2.空军工程大学基础部,陕西 西安 710051
Author(s):
CHEN Yanpu1 ZHANG Jieqiu2
1.College of Information Engineering, Xijing University, Xi’an 710123, China;2.Department of Basic Sciences, Air Force Engineering University, Xi’an 710051, China
关键词:
周期信号均值型参数异步误差逐次平均矩形卷积窗
Keywords:
periodic signal mean parameter successive average asynchronous sampling rectangular convolution window
分类号:
TM390
DOI:
.
文献标志码:
A
摘要:
针对一般加窗函数在构建时未充分结合周期信号的特点以及在用于周期信号均值型参数测量时误差分析不具体等问题,基于周期信号的逐次平均可有效抑制异步采样误差的思想,导出了与逐次平均等价的周期信号均值型参数的矩形卷积窗加权测量方法,借助谐波传递系数定量分析了均值的矩形卷积窗加权测量误差。矩形卷积窗加权测量方法对周期信号均值型参数的测量误差随矩形卷积窗阶次的提高呈指数下降,明显低于相同周期窗宽的其他加窗函数对应的测量误差。对正弦信号有效值的矩形卷积窗加权测量进行了理论分析和数值计算,验证了理论和方法的正确性和有效性。
Abstract:
Aiming at the problems that the design of a general window function is not fully combined with the characteristics of periodic signal and the mean value measurement error analysis of a periodic signal is not specific, based on the idea that the successive average of a periodic signal can effectively suppress the asynchronous error, the weighted measurement method with rectangular convolution windows for the mean value of a periodic signal is introduced, and the measurement error is quantitatively analyzed with the help of harmonic transfer coefficients. With the increase of the order of the rectangular convolution window, the mean value measurement error of the periodic signal decreases exponentially, which is significantly lower than that of other windowed functions with the same period width. The theoretical analysis and numerical calculation of the weighted measurement of the root mean square (RMS) of a sinusoidal signal with rectangular convolution windows are carried out to verify the correctness and effectiveness of the theory.

参考文献/References:

[1] 戴先中. 准同步采样及其在非正弦功率测量中的应用[J].仪器仪表学报, 1984,5(4):390-396.
[2] Dai X, Gretsch I. Quasi-synchronous sampling algorithm and its applications[J].IEEE Trans. Instrum. Meas., 1994, 43(2): 204-209.
[3] Chen Y, Tan W. Convoluted window weighted measurement for quasi-periodic signal parameters and its MCU implementation[C]// IEEE Proceedings 19th International Conference on Communication Technology. U S: IEEE, 2019: 220-223.
[4] Ferrero A, Ottoboni R. A low-cost frequency multiplier for synchronous sampling of periodic signals[J]. IEEE Trans. Instrum. Meas., 1992, 41(2): 203-207.
[5] Kolanko J K. Accurate measurement of power, energy, and true RMS voltage using synchronous counting[J]. IEEE Trans. Instrum. Meas., 1993, 42(3): 752-754.
[6] Ferrero A, Ottoboni R. High-accuracy Fourier analysis based on synchronous sampling techniques[J]. IEEE Trans. Instrum. Meas., 1992, 41(6): 780-786.
[7] Harris F C. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proc. IEEE, 1978, 66(1): 51-83.
[8] Nuttall A. Some windows with very good side lobe behavior[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(1) : 84-91.
[9] Xi J,Chicharo J F. A new algorithm for improving the accuracy of periodic signal analysis[J]. IEEE Trans. Instrum. Meas, 1996, 45(4): 827-831.
[10] Wen H, Dai H, Teng Z, et al. Performance comparison of windowed interpolation FFT and quasi-synchronous sampling algorithm for frequency estimation[JOL]. Math. Probl. Eng., 2014[2020-02-27]. https://doi.org/10.1155/2014/745830.
[11] Wang X, Zhang X, Zhang L, et al.True AC root-mean-square measurement based on the calculation of cycle double-end sampling values[C]// 2010 WASE International Conference on Information Engineering. Beidaihe, China, 2010: 177-180.
[12] Pan W.A fast and high-precision measurement of distorted power based on digital filtering technique[J]. IEEE Trans. Instrum. Meas., 1992, 41(3): 403-406.
[13] Shuai Z, Zhang J, Tang L, et al. Frequency shifting and filtering algorithm for power system harmonic estimation[J]. IEEE Trans. Ind. Inform., 2019, 15(3): 1554-1565.
[14] Zhang J, Wen H, Tang L. Improved smoothing frequency shifting and filtering algorithm for harmonic analysis with systematic error compensation[J]. IEEE Trans. Ind. Electron., 2019, 66(12): 9500-9509.
[15] Salvatore L, Trotta A. Flat-top windows for PWM waveform processing via DFT[J]. IEEE Proceedings, 1988, 135(6): 346-361.
[16] Chen Y, Zhang J, Li D. Triangular window weighted algorithm for RMS value measurement[C]// IEEE Proceedings 7th International Conference on Signal Processing. US: IEEE, 2004: 85-88.
[17] Wen H, Teng Z, Guo S. Triangular self-convolution window with desirable sidelobe behaviors for harmonic analysis of power system[J]. IEEE Trans. Instrum. Meas., 2010, 59(3): 543-552.
[18] 张介秋, 梁昌洪, 陈砚圃. 一类新的窗函数—卷积窗及其应用[J]. 中国科学(E辑), 2005, 35(7): 773-784.
[19] Reljin I, Reljin B D, Papic V D. New window functions generated by means of time convolution-Spectral leakage erro[C]// IEEE Proceedings 9th Mediterranean Electrotechnical Conference. US: IEEE, 1998: 878-881.
[20] Reljin I, Reljin B D, Papic V D. Extremely flat-top windows for harmonic analysis[J]. IEEE Trans. Instrum. Meas., 2007, 56(3): 1025-1041.

备注/Memo

备注/Memo:
收稿日期:2020-03-03
基金项目:国家自然科学基金项目资助(61971437);西安市科技计划项目资助(GXYD20.5)
作者简介:陈砚圃(1963—),男,河北元氏人,博士,教授,研究方向:电子测量,信号处理。E-mail: ch80021@163.com
更新日期/Last Update: 2020-07-15