[1]陈子兆,矫文成,孙慧贤,等.基于深度置信网络的通信控制设备故障诊断[J].探测与控制学报,2020,42(02):86.[doi:.]
 CHEN Zizhao,JIAO Wencheng,SUN Huixian,et al.Fault Diagnosis Based on Wavelet Transform and Deep Belief Network[J].,2020,42(02):86.[doi:.]
点击复制

基于深度置信网络的通信控制设备故障诊断()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
42
期数:
2020年02
页码:
86
栏目:
出版日期:
2020-04-15

文章信息/Info

Title:
Fault Diagnosis Based on Wavelet Transform and Deep Belief Network
文章编号:
1008-1194(2020)02-0086-06
作者:
陈子兆矫文成孙慧贤陈旭
陆军工程大学石家庄校区,河北 石家庄 050003
Author(s):
CHEN Zizhao JIAO Wencheng SUN Huixian CHEN Xu
The Army Engineering University of PLA, Shijiazhuang 050003, China
关键词:
故障诊断通信控制设备深度置信网络小波变换
Keywords:
fault diagnosis communication control equipment DBN WT
分类号:
TP273
DOI:
.
文献标志码:
A
摘要:
针对传统的故障诊断方法在装备故障诊断中带来的准确率低问题,提出了一种基于小波变换(WT)和深度置信网络(DBN)的通信控制设备故障诊断方法。该方法通过采集样本故障数据、分析处理故障数据、输入神经网络进行学习、对测试数据进行识别等步骤对通信控制设备进行故障诊断,并与支持向量机(SVM)、k类临近法(KNN)和BP神经网络等传统故障诊断方法进行比较。仿真实验结果表明,提出的方案识别准确率达到93%,与传统方法相比具有更高的准确率,表现更好。
Abstract:
Aiming at the high time-consuming and low-accuracy rate brought by traditional fault diagnosis methods in equipment fault diagnosis, a fault diagnosis method for communication control equipment based on wavelet transform (WT) and deep confidence network (DBN) was proposed. The method performed fault diagnosis on the communication control device by collecting sample fault data, analyzing and processing the fault data, learning by inputting the neural network, and identifying the test data. It was compared with traditional fault diagnosis methods such as support vector machine (SVM), k-class proximity (KNN) and BP neural network. The simulation results showed that the proposed scheme had an accuracy of 93%, which was of higher accuracy and better performance than the traditional method.

参考文献/References:

[1]吕琛,栾家辉,王立梅,等. 故障诊断与预测—原理、技术及应用[M].北京:北京航空航天大学出版社,2012.
[2]秦旭东. 火控系统故障诊断专家系统的研究[D].沈阳:沈阳工业大学,2017.
[3]张海波,贾凯,施蔚锦,等.信息论与专家系统相结合的电网故障诊断[J].电力系统及其自动化学报,2017,29(8):111-118.
[4]GAO Dexin, HOU Junjie, LIANG Ke, et al. Fault diagnosis system for electric vehicle charging devices based on fault tree analysis[C]//第37届中国控制会议论文集(C).北京:中国自动化学会控制理论专业委员会,2018.
[5]范跃华,刘白林,耿朝阳.指挥控制系统故障诊断专家系统的设计与实现[J].火力与指挥控制,2005(7):63-66.
[6]刘斌斌,胡建旺.指挥控制系统智能故障诊断技术研究[J].中国测试,2013,39(2):117-120.
[7]苏利敏,侯朝桢,戴忠健.指挥控制系统的通信网络故障诊断专家系统[J].计算机工程,2003(13):19-20.
[8]Peng G, Tang SQ, Lin ZM, et al. Applications of fuzzy multilayer support vector machines in fault diagnosis and forecast of electric power equipment[C]//2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference(IAEAC). US: IEEE, 2017: 457-461.
[9]郑铌,张琳,汤煜,等.基于小波变换与SVM的复杂装备故障诊断研究[J].火力与指挥控制,2016,41(6):104-107.
[10]Cheng Y, Zhao H. Fault detection and diagnosis for railway switching points using fuzzy neural network[C]//2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), US: IEEE, 2015:860-865.
[11]Jin Yao,Shan Changzheng, Wu Yan, et al.Fault diagnosis of hydraulic seal wear and internal leakage using wavelets and wavelet neural network[C]//IEEE Transactions on Instrumentation and Measurement. US: IEEE, 2019: 1026-1034.
[12]罗民,吴敏,向婕.无人机指挥控制系统的神经网络专家故障诊断[J].装备制造技术,2007(12):31-33.
[13]王格芳,陈国顺,庞郁.多智能体炮兵指挥系统故障诊断系统研究[J].仪器仪表学报,2006(S2):1770-1772.
[14]Wusuo L, Shenghui S, Ziqiao G, et al. Improved deep belief network model and its application in named entity recognition of Chinese electronic medical records[C]//2018 IEEE 3rd International Conference on Big Data Analysis(ICBDA).US: IEEE,2018:356-360.
[15]Ma L, Yang Y, Wang H. DBN based automatic modulation recognition for ultra-low SNR RFID signals[C]// Control Conference.US: IEEE, 2016:7054-7057.
[16]Siyuan W, Yong L, Xu Z. A differentiated DBN model based on CRBM for time series forecasting[C]// 2017 IEEE 17th International Conference on Communication Technology(ICCT). US: IEEE,2018:1926-1931.
[17]马辉,车迪,牛强,等.基于深度神经网络的提升机轴承故障诊断研究[J].计算机工程与应用,2019(16):1-11.
[18]蒋黎明,李友荣,徐增丙,等.基于深度置信网络和信息融合技术的轴承故障诊断[J].武汉科技大学学报,2019,42(1):40-44.
[19]李梦诗,余达,陈子明,等.基于深度置信网络的风力发电机故障诊断方法[J].电机与控制学报,2019,23(2):114-122.
[20]陈保家,刘浩涛,徐超,等.深度置信网络在齿轮故障诊断中的应用[J].中国机械工程,2019,30(2):205-211.

相似文献/References:

[1]董涛,程培源,樊波,等.定子绕组诊断的分离电压和电流正负序分量法[J].探测与控制学报,2011,(01):23.
 DONG Tao,CHENG Peiyuan,FAN Bo,et al.Fault Diagnosis of Induction Motor’s Stator Winding by Positive and Negative Sequence Component of Voltage and Current Separation Method[J].,2011,(02):23.
[2]潘龙,潘宏侠,马白雪.基于小波尺度谱重排与排列熵的自动机故障诊断[J].探测与控制学报,2015,(03):100.[doi:.]
 PAN Long,PAN Hongxia,MA Baixue.Automaton Fault Diagnosis By Wavelet Scale Spectrum Rearrangement and Permutation Entropy[J].,2015,(02):100.[doi:.]
[3]宋涛,舒涛,刘进,等.基于改进最小二乘支持向量机的柱塞泵故障诊断模型[J].探测与控制学报,2015,(04):91.[doi:.]
 SONG Tao,SHU Tao,LIU Jin,et al.A Fault Diagnosis for Plunger Pump Based on Improved LSSVM[J].,2015,(02):91.[doi:.]
[4]宁继荣,刘尧.基于经验模式分解的滚动轴承故障诊断方法[J].探测与控制学报,2017,39(05):91.[doi:.]
 NING Jirong,LIU Yao.Diagnosis Method of Rolling Element Bearing Fault Based on EMD[J].,2017,39(02):91.[doi:.]
[5]牛群,刘志永,褚建川,等.基于长短时记忆网络的仿真系统数据故障诊断方法[J].探测与控制学报,2019,41(05):25.[doi:.]
 NIU Qun,LIU Zhiyong,CHU Jianchuan,et al.Simulation System Datas Fault Diagnosis Based on Long Short-term Memory Network[J].,2019,41(02):25.[doi:.]

备注/Memo

备注/Memo:
收稿日期:2019-09-10
基金项目:电子信息装备远程维护保障技术基金项目资助(41404030102)
作者简介:陈子兆(1996—),男,湖南邵阳人,硕士研究生,研究方向:神经网络、故障诊断。E-mail: 294782015@qq.com
更新日期/Last Update: 2020-05-15