[1]郝治理,刘春生,周青松.基于稀疏系统辨识的收发隔离方法[J].探测与控制学报,2019,41(06):112.[doi:.]
 HAO Zhili,LIU Chunsheng,ZHOU Qingsong.Transceiver Isolation Methods Based on Sparse System Identification[J].,2019,41(06):112.[doi:.]
点击复制

基于稀疏系统辨识的收发隔离方法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
41
期数:
2019年06
页码:
112
栏目:
出版日期:
2020-01-15

文章信息/Info

Title:
Transceiver Isolation Methods Based on Sparse System Identification
文章编号:
1008-1194(2019)06-0112-07
作者:
郝治理刘春生周青松
国防科技大学电子对抗学院,安徽 合肥 230037
Author(s):
HAO Zhili LIU Chunsheng ZHOU Qingsong
Electronic Engineering College, National University of Defense Technology, Hefei 230037, China
关键词:
雷达干扰机收发隔离稀疏系统辨识最小二乘估计
Keywords:
radar jammer transceiver isolation sparse system identification least squares estimation
分类号:
TN97
DOI:
.
文献标志码:
A
摘要:
针对干扰信号耦合路径稀疏存在时,常规的系统辨识方法对稀疏系统的辨识精度下降,无法妥善解决雷达干扰机的收发隔离问题,提出了两种基于稀疏系统辨识的收发隔离方法。这两种方法的共性是在求解路径衰减系数之前,通过加入稀疏约束完成了对主要耦合路径的提取,然后再采用相关方法计算所对应的系数,克服了由于系统噪声对衰减系数为零的路径作用而带来的估计误差。理论分析和仿真结果表明,在稀疏环境下,两种方法对干扰耦合路径的辨识精度要高于最小二乘法。在信噪比较高的环境下,两种方法均适用,但第二种方法的复杂度较高,而在低信噪比环境下,只有第二种方法能够满足隔离需求。它们不影响侦察机同时接收的雷达信号,有效地解决了雷达干扰机的收发隔离问题。
Abstract:
In view of the existence of sparse coupling paths of jamming signals, the identification accuracy of the sparse system by conventional system identification methods decreased, and the problem of transceiver isolation of radar jammer could not be solved properly. Two transceiver isolation methods based on sparse system identification were proposed. The common feature of these two methods was that before solving the paths attenuation coefficients, the extraction of the main coupling paths was completed by adding sparse constraints, and then relevant methods are used to calculate the corresponding coefficients, so as to overcome the estimation error caused by the effect of system noise on the paths with the attenuation coefficients being zero. Theoretical analysis and simulation results showed that the accuracy of the two methods was higher than that of the least square method in the sparse environment. Both methods were applicable in the environment with high signal-to-noise ratio, but the second method had a high complexity, while in the environment with low signal-to-noise ratio, only the second method could meet the isolation requirements.

参考文献/References:

[1]张凯, 王建业, 冯增辉. 基于自适应系统辨识的收发隔离技术研究[J]. 现代防御技术, 2010(1):77-80.
[2]宋月丽, 黎仁刚. 雷达对抗系统收发隔离技术研究[J]. 舰船电子对抗, 2012, 35(1):20-24.
[3]谢旻睿. 有源干扰的收发隔离技术研究[D]. 西安:西安电子科技大学,2015.
[4]Ljung L. System Identification[J]. Theory for t-he User, 2007, 15(4):221-246.
[5]Fu L, Li P. The research survey of system I-dentification method[C]// Intelligent Human-Ma-chine Systems and Cybernetics (IHMSC), 2013 5th International Conference on. US: IEEE Comput-er Society, 2013:397-401.
[6]庞中华. 系统辨识与自适应控制MATLAB仿真[M]. 北京:北京航空航天大学出版社,2009.
[7]曲庆,金坚,谷源涛. 用于稀疏系统辨识的改进l_0-LMS算法[J]. 电子与信息学报, 2011, 33(3):604-609.
[8]王强, 郭波. 基于系统辨识的干扰对消技术研究[J]. 舰船电子对抗, 2017(1):8-12.
[9]Chen Y, Gu Y, Hero A O, et al. Sparse LMS for system identification[C]// IEEE International Conference on Acoustics. US:IEEE, 2009:3125-3128.
[10]Wei Y, Wang Z, Zhang Y. A reweighted zero-attracting/repelling LMS algorithm for sparse system identification[C]// International Conference on Image. US:IEEE, 2017:1128-1132.
[11]Michael Elad, 埃拉德, 曹铁勇. 稀疏与冗余表示[M]. 北京:国防工业出版社, 2015.
[12]邹纯烨, 张剑云, 周青松. 基于自适应系统辨识的收发隔离技术研究[J]. 现代雷达, 2015, 37(11):16-21.
[13]Liu L, Zhang Y, Sun D. VFF l1-norm penalis-ed WL-RLS algorithm using DCD iterateons f-or underwater acoustic communication[J]. Iet C-ommunications, 2017, 11(5):615-621.
[14]Beck E, Batista E L O, Seara R. Norm-constr-ained adaptive algorithms for sparse system id-entification based on projections onto intersecti-ons of hyperplanes[J]. Signal Processing, 2015,118(1):259-271.

备注/Memo

备注/Memo:
收稿日期:2019-04-11
作者简介:郝治理(1995—),男,河南周口人,硕士研究生,研究方向:信号与信息处理,雷达对抗技术。E-mail:m15656559951@163.com。

更新日期/Last Update: 2020-01-13