[1]马烜,邹金慧.基于三维块匹配与改进Top-hat的红外图像目标检测方法[J].探测与控制学报,2019,41(06):83.[doi:.]
 MA Xuan,ZOU Jinhui.3-D Block-Matching Filtering and Improved Top-hat Method for Infrared Image Target Detection[J].,2019,41(06):83.[doi:.]
点击复制

基于三维块匹配与改进Top-hat的红外图像目标检测方法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
41
期数:
2019年06
页码:
83
栏目:
出版日期:
2020-01-15

文章信息/Info

Title:
3-D Block-Matching Filtering and Improved Top-hat Method for Infrared Image Target Detection
文章编号:
1008-1194(2019)06-0083-05
作者:
马烜12邹金慧12
1.昆明理工大学信息工程与自动化学院,云南 昆明 650500;2.云南省矿物管道输送工程技术研究中心,云南 昆明 650500
Author(s):
MA Xuan12ZOU Jinhui12
1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;2. Engineering Research Center for Mineral Pipeline Transportation of Yunnan Province, Kunming 650500, China
关键词:
三维块匹配改进顶帽阈值分割无损检测
Keywords:
block-matching and 3-D filtering improve top-hat threshold segmentation nondestructive testing
分类号:
TP391.4
DOI:
.
文献标志码:
A
摘要:
针对复杂背景干扰下难以精确检测出红外图像目标的问题,提出基于三维块匹配(BM3D)与改进顶帽(Top-hat)的红外图像目标检测方法。该方法首先采用三维块匹配算法对红外图像进行滤波,更好地保留图像的边缘信息;其次构建改进Top-hat算子,利用不同大小、不同形状的结构元素对滤波后图像进行背景估计,得到校正后图像;最后对校正后图像进行阈值分割,得到目标图像。仿真实验结果表明,与经典Top-hat算法比较,提出的方法能够有效地增强红外图像对比度、抑制噪声干扰、减弱非均匀加热背景的影响,从而突出红外图像目标信息,使得红外图像目标检测更加准确。
Abstract:
In view of the difficulty in accurately detecting infrared image targets under complex background interference, this paper proposed a Block-Matching and 3-D Filtering (BM3D) and improved top-hat infrared image target detection method. The method firstly used the Block-Matching and 3-D to filter the infrared image to better preserve the edge information of the image. Secondly, the improved Top-hat operator was constructed. The background image of the filtered image was estimated by using structural elements of different sizes and shapes,corrected image. Finally, the corrected image was subjected to threshold segmentation to obtain a target image. The simulation results showed that compared with the classical Top-hat algorithm, the proposed method could effectively enhance the infrared image contrast, suppress noise interference, and weaken the influence of non-uniform heating background, thus highlighting the infrared image target information and making the infrared image target detection more accurate.

参考文献/References:

[1]梅林, 吴立德, 王裕文. 脉冲加热红外无损检测中的图像处理[J]. 红外与毫米波学报, 2002, 21(5):54-58.
[2]陈钱. 红外图像处理技术现状及发展趋势[J]. 红外技术, 2013,35(6):311-318.
[3]Jadin M S , Taib S . Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography[J]. Infrared Physics & Technology, 2012, 55(4):236-245.
[4]江海军, 陈力. 脉冲红外无损检测技术研究现状与发展趋势[J].红外技术, 2018, 40(10):946-950.
[5]方义强, 程正东, 樊祥, 等. 一种基于方差标记的形态学红外小目标检测算法[J]. 电子学报, 2015(2):338-343.
[6]尹士畅, 喻松林. 基于小波变换和直方图均衡的红外图像增强[J]. 激光与红外, 2013, 43(2):225-228.
[7]肖进胜, 李文昊, 姜红, 等. 基于双域滤波的三维块匹配视频去噪算法[J]. 通信学报, 2015, 36(9):91-97.
[8]王燕, 李晓燕, 母秀清,等. 一种基于BM3D的接触网图像自适应去噪新方法[J]. 铁道学报, 2016, 38(4):59-65.
[9]Hasan M , El-Sakka M R . Improved BM3D image denoising using SSIM-optimized Wiener filter[J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1):25.
[10]陆福星, 李夜金, 陈忻, 等. 基于Top-hat变换的PM模型弱小目标检测[J]. 系统工程与电子技术, 2018, 40(7):6-11.
[11]徐超, 冯辅周, 闵庆旭, 等. 基于形态学和OTSU算法的红外图像降噪及分割[J]. 红外技术, 2017(6):512-516.
[12]王凡, 彭国华, 谢昊伶. 基于形态学增强和图像融合的板带钢缺陷检测[J]. 激光与红外, 2018(1):124-128.
[13]Zhu P, Ma X, Huang Z. Fusion of infrared-visible images using improved multi-scale top-hat transform and suitable fusion rules[J]. Infrared Physics & Technology, 2017, 81:282-295.
[14]刘莉, 靳鸿, 唐波, 等. 多尺度高帽变换的红外图像增强优化算法[J]. 探测与控制学报, 2015, 37(3):66-69.

相似文献/References:

[1]王方超,张旻,宫丽美.改进的Roberts图像边缘检测算法[J].探测与控制学报,2016,38(02):88.[doi:.]
 WANG Fangchao,ZHANG Min,GONG Limei.Image Edge Detection Algorithm of Roberts Operator[J].,2016,38(06):88.[doi:.]

备注/Memo

备注/Memo:
收稿日期:2019-06-19
基金项目:国家自然科学基金项目资助(61663017)
作者简介:马烜(1993—),男,陕西眉县人,硕士研究生,研究方向:图像处理、机械故障诊断。E-mail:172897169@qq.com。

更新日期/Last Update: 2020-01-13