[1]郝学坤,刘建成.基于IVSSTLMS算法的数字域共址无线收发设备互扰对消[J].探测与控制学报,2019,41(04):98.[doi:.]
 HAO Xuekun,LIU Jiancheng.Digital Mutual-interference Cancellation Based on IVSSTLMS Algorithm for Co-site Wireless Receive-transmit Equipment[J].,2019,41(04):98.[doi:.]
点击复制

基于IVSSTLMS算法的数字域共址无线收发设备互扰对消()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
41
期数:
2019年04
页码:
98
栏目:
出版日期:
2019-08-26

文章信息/Info

Title:
Digital Mutual-interference Cancellation Based on IVSSTLMS Algorithm for Co-site Wireless Receive-transmit Equipment
文章编号:
1008-1194(2019)04-0098-08
作者:
郝学坤1刘建成12
1.中国电子科技集团公司第五十四研究所,河北 石家庄 050081;2.中国人民解放军31634部队,云南 昆明 611731
Author(s):
HAO Xuekun1 LIU Jiancheng12
1. The 54th Research Institute of CETC, Shijiazhuang 050081, China;2. Unit 31634 of PLA, Kunming 650217, China
关键词:
共址无线设备互扰IVSSTLMS收敛速度互扰对消比
Keywords:
mutual-interference of co-site wireless equipment IVSSTLMS convergence speed mutual-interference cancellation ratio
分类号:
TN911
DOI:
.
文献标志码:
A
摘要:
针对同平台无线收发设备工作于相邻频段产生相互干扰,而已有数字域互扰对消方法计算复杂度高,存在收敛速度与互扰对消比相互制约的问题,提出了基于迭代变步长变换域最小均方算法(IVSSTLMS)的数字域共址无线收发设备互扰对消方法。该方法将迭代变步长与变换域LMS算法相结合,能够有效提高算法收敛速度和避免特征值扩散的不利影响,快速精确估计共址无线收发设备的互扰信道参数,从而获得高的互扰对消比(MICR)。仿真验证结果表明,该方法具有快的收敛速度,同时互扰对消比高于现有变步长LMS算法和递推最小二乘(RLS)算法。
Abstract:
The wireless transmit equipment often interferes the co-site receive equipment duo to the adjacent frequency band, and the existing digital cancellation methods have high complexity and the contradiction between convergence speed and mutual-interference cancellation ratio (MICR). To solve these problems, a digital mutual-interference cancellation method of co-site wireless receive-transmit equipment based on iterative varying step-size transform least mean square algorithm (IVSSTLMS) was proposed in this paper. In this method, the idea of iterative varying step-size was adopted in transform LMS algorithm to enhance the convergence speed and suppress the diffusion of eigenvalue. More precisely, the IVSSTLMS algorithm was utilized to rapidly and accurately estimate the mutual-interference channel parameters of co-site receive-transmit equipment, which led to achieving high MICR. Simulation results showed that this method could not only enhance convergence speed, but also achieved lager MICR than existing varying step-size LMS algorithms and recursive least square algorithm.

参考文献/References:

[1]Young YK, Byung JK, Joon HC.An optimal full-duplex AF relay for joint analog and digital domain self-interference cancellation[J]. IEEE Transactions on Communications, 2014, 62(8): 2758-2772.
[2]Roberto L, Emilio A, Carlos M, et al. Anadaptive feedback canceller for full-duplex relays based on spectrum shaping[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(8): 1566 -1577.
[3]Heino M, Korpi D, Huusari T, et al. Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays[J]. IEEE Communications Magazine, 2015, 53(5): 91-101.
[4]赖鑫.射频干扰对消技术的系统设计与仿真分析[J]. 电讯技术, 2013, 53(3): 259-264.
[5]张倩.跳频同址干扰的自适应IIR抵消方法[J]. 科学技术与工程, 2013, 13(8): 2103-2107.
[6]Santora CG. Evaluation ofvery high frequency interference cancellation system[R]. DTIC Document, 1977.
[7]刘建成, 全厚德, 李召瑞,等. 多路延迟正交合成的多径信道射频干扰对消[J]. 电子与信息学报, 2017, 39(3): 654-661.
[8]Wang J, Zhao H, Tang Y. A RF adaptive least mean square algorithm for self-interference cancellation in co-frequency co-time full duplex systems[C]//2014 IEEE International Conference onCommunications (ICC).US: IEEE, 2014: 5622-5627.
[9]Bharadia D, McMilin E, Katti S. Full duplex radios[C]//Proceedings of the ACM SIGCOMM13.US:IEEE, 2013: 375-386.
[10]Kenneth EK, Joseph GM, Perry BT. Multi-tap RF canceller for in-band full-duplex wireless communications[J]. IEEE Transactions on Wireless Communication, 2016, 15(6): 4321-4334.
[11]Zhang Z, Chai X, Long K, et al.Fullduplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection[J]. IEEE Communications Magazine, 2015, 53(5): 128-137.
[12]Korpi D, Anttila L, Syrj V, et al. Widely-linear digital self-interference cancellation in direct-conversion full-duplex transceiver[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1674-1687.
[13]Sabharwal A, Schniter P, Guo D, et al. In-band full-duplex wireless: challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637-1652.
[14]Duarte M, Dick C,and Sabharwal A. Experiment-driven characterization of full-duplex wireless systems[J]. IEEE Transactions on Wireless Communications, 2012, 11(12): 4296-4307.
[15]Shen Y, Zhou J, Tang Y. Digital self-interference cancellation in wireless co-time and co-frequency full-duplex system[J]. Wireless Personal Communication, 2015, 82(4): 2557-2565.
[16]Ahmed M, Tho L. A maximum-likelihood channel estimator for self-interference cancellation in MIMO full-duplex systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5122-5132.
[17]唐成凯, 廉保旺, 张玲玲. 卫星通信系统双向中继转发白干扰消除算法[J]. 西安交通大学学报, 2015, 49(2): 74-79.
[18]Ahmed E, Eltawil A M. All-digital self-interference cancellation technique for full-duplex systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3519-3532.
[19]Li N, Zhu W, Han H. Digital interference cancellation in single channel, full duplex wireless communication[C]//2012 8th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM).US:IEEE, 2012.
[20]Wu D, Zhang C, Gao S, et al. A digital self-interference cancellation method for practical full-duplex radio[C]//2014 IEEE International Conference onSignal Processing, Communications and Computing (ICSPCC).US: IEEE, 2014: 74-79.
[21]刘建成, 赵宏志, 全厚德. 基于迭代变步长LMS的数字域自干扰对消[J]. 电子学报, 2016, 44(7): 1530-1538.
[22]SimonH. Adaptive Filter Theory (Fifth Edition)[M]. 郑宝玉等,译.北京: 电子工业出版社, 2016.
[23]Hsu-Chang H, Junghsi L. A new variable step-size NLMS algorithm and its performance analysis[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2055-2060.

备注/Memo

备注/Memo:
收稿日期:2019-02-10
作者简介:郝学坤(1975—),男,山东潍坊人,博士,研究员,研究方向:无线移动通信技术。E-mail:haoxuekun@163.com。
更新日期/Last Update: 2019-09-12