[1]马玉清,李琳.传感器网络中的时变信号跟踪分布式估计器[J].探测与控制学报,2019,41(04):84.[doi:.]
 MA Yuqing,LI Lin.The Distributed Estimator for Time-varying Signal Tracking in Sensor Networks[J].,2019,41(04):84.[doi:.]
点击复制

传感器网络中的时变信号跟踪分布式估计器()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
41
期数:
2019年04
页码:
84
栏目:
出版日期:
2019-08-26

文章信息/Info

Title:
The Distributed Estimator for Time-varying Signal Tracking in Sensor Networks
文章编号:
1008-1194(2019)04-0084-08
作者:
马玉清1 李琳2
1.安徽工商职业学院信息工程学院,安徽 合肥 231131;2.上海理工大学光电信息与计算机工程学院, 上海 200093
Author(s):
MA Yuqing1 LI Lin2
1.School of Information Engineering, Anhui Business And Technology College, Hefei 231131, China; 2.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
传感器网络 时变信号 跟踪估计 帕累托优化 成本函数 均方误差
Keywords:
sensor network time-varying signal tracking estimation pareto optimization cost function mean square error
分类号:
TP301;TN911
DOI:
.
文献标志码:
A
摘要:
针对传感器网络中时变信号的跟踪估计及其他估计器存在的不足,提出了新的分布式估计器。首先,该估计器的每个节点测量一个时变带噪信号,并计算出其局部估计值作为其自身和它的邻居的测量值和估计值的加权和;其次,通过一个合适的帕累托优化问题来估计和更新它的权值,以使估计误差的方差和均值最小化;还对分布式估计器在估计偏差和估计误差性能方面进行了研究,给出了偏差的上限;估计器不依赖于中心协调,且参数优化和估计都分布在节点上。仿真结果表明,提出的分布式估计器相比于现有的分布式跟踪估计器,能更好地跟踪传感器网络中由噪声所损坏的未知时变信号,并能得到更好的估值结果。
Abstract:
Aiming at the tracking and estimation of time-varying signal in sensor network and the shortcomings of other estimators,the novel distributed estimator was proposed. Firstly, each node in this estimator measured a time-varying noisy signal and computed its local estimate as a weighted sum of its own and its neighbors’ measurements and estimates. Secondly, a suitable Pareto optimization issue was used to estimate and update its weights to minimize both the variance and the mean of the estimation error. The performance of the distributed estimator was investigated in terms of estimation bias and estimation error. Moreover, an upper bound of the bias was provided. The estimator did not rely on a central coordination, parameter optimization and estimation were distributed across the nodes. Simulation results showed that the proposed distributed estimator could track unknown time-varying signals damaged by noise and obtain estimation results.

参考文献/References:

[1]陈艳,王子健,赵泽,等.传感器网络环境监测时间序列数据的高斯过程建模与多步预测[J].通信学报,2015,36(10):252-262.
[2]费欢,肖甫,李光辉,等.基于多模态数据流的无线传感器网络异常检测方法[J].计算机学报,2017,40(8):1829-1842.
[3]孔德川,王建平,陈伟.基于蚁群算法的水声传感器网络信号检测方法[J].仪表技术与传感器,2016(8):100-104.
[4]Hu W,Tay W P.Multi-Hop diffusion LMS for energy-constrained distributed estimation[J].IEEE Transactions on Signal Processing,2014,63(15):4022-4036.
[5]朱蕾.基于广义系统的无线传感器网络融合估计算法研究[D].杭州:浙江工业大学,2015.
[6]徐婷婷.基于偏差补偿LMS算法的分布式协同估计方法研究[D].北京:北京理工大学,2016.
[7]Markovich-Golan S,Bertrand A,Moonen M,et al.Optimal distributed minimum-variance beamformingapproaches for speech enhancement in wireless acoustic sensor networks[J].Signal Processing,2015,107(107):4-20.
[8]You K Y,Xie L H.Survey of recent progress in networked control systems[J]. Acta Automatica Sinica,2013,39(2):101-117.
[9]Zhu S.Wireless sensor networks-distributed consensus estimation[J].Eurasip Journal on Wireless Communications &Networking,2014,9(11):976-978.
[10]Safarinejadian B,Mohammadnia F.Distributed weighted averaging-based robust Cubature Kalman Filter for state estimation of nonlinear systems in wireless sensor networks[C]//In Proceedings of 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE).Mashhad,Iran,2016:66-71.
[11]Olshevsky A.Linear time average consensus on fixed graphs and implications for Decentralized Optimization and Multi-Agent Control[J].Mathematics,2015,107(32):91-92.
[12]Chen C,Yan J,Lu N,et al.Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks[J].IEEE Transactions on Emerging Topics in Computing,2015,3(3):352-362.
[13]Feng J,Lian B,Zhao H.Smart power management and delay reduction for target tracking in wireless sensor networks[J].Journal of Electrical & Computer Engineering,2014,2014(2):1-8.
[14]Radenkovic M,Tadi M.Multi-agent adaptiveconsensus of networked systems on directed graphs[J].International Journal of Adaptive Control & Signal Processing,2016,30(1):46-59.
[15]Schizas I D,Giannakis G B,Roumeliotis S,et al.Consensus in Ad hoc WSNs with noisy links-part II[J]. Signal Processing IEEE Transactions on,2015,56(1):350-364.
[16]Sui D,Johansen T A.Linear constrained moving horizon estimator with pre-estimating observer[J].Systems & Control Letters,2014,67(7):40-45.
[17]Vaccaro A,Loia V,Formato G,et al.A Self-organizing architecture for decentralized smart microgrids synchronization,control, and monitoring[J].IEEE Transactions on Industrial Informatics,2015,11(1):289-298.
[18]Locsi L.A hyperbolic variant of the Nelder-mead simplex method in low dimensions[J].Acta Universitatis Sapientiae Mathematica,2013,5(2):169-183.

相似文献/References:

[1]程远国,聂舟.基于曲线运动方程的传感器网络目标跟踪算法[J].探测与控制学报,2008,(04):22.
 CHENG Yuan-guo,NIE Zhou.A Target Tracking Algorithm for Sensor Networks Based on a Curvilinear Movement Equation[J].,2008,(04):22.
[2]崔逊学,宗军君.基于短基线传感器网络的声源被动测向方法[J].探测与控制学报,2015,(05):1.[doi:.]
 CUI Xunxue,ZONG Junjun.Passive Direction-finding Methods of Acoustic Source Based on Short Baseline Sensor Network[J].,2015,(04):1.[doi:.]

备注/Memo

备注/Memo:
收稿日期:2019-03-15
基金项目:安徽省自然科学研究项目资助(KJ2017B001)
作者简介:马玉清(1980—),女,山东泰安人,硕士,讲师,研究方向:智能控制,图像处理。E-mail:zu699551@163.com。
更新日期/Last Update: 2019-09-12