[1]史凯,刘马宝.捷联惯导四元数的四阶龙格库塔姿态算法[J].探测与控制学报,2019,41(03):61.[doi:.]
 SHI Kai,LIU Mabao.Strapdown Inertial Navigation Quaternion Fourth-order Runge-kutta Attitude Algorithm[J].,2019,41(03):61.[doi:.]
点击复制

捷联惯导四元数的四阶龙格库塔姿态算法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
41
期数:
2019年03
页码:
61
栏目:
出版日期:
2019-06-24

文章信息/Info

Title:
Strapdown Inertial Navigation Quaternion Fourth-order Runge-kutta Attitude Algorithm
文章编号:
1008-1194(2019)03-0061-05
作者:
史凯12刘马宝1
1.西安交通大学航天学院,陕西 西安 710049;2.西安机电信息技术研究所,陕西 西安710065
Author(s):
SHI Kai12LIU Mabao1
1.Xi’an Jiaotong University, Xi’an 710049, China;2.Xi’an Institute of Electromechanical Information Technology, Xi’an 710065, China
关键词:
捷联惯导姿态更新算法四阶龙格库塔法四元数
Keywords:
strapdown inertial navigation attitude update algorithm Fourth order runge kutta method quaternions
分类号:
V241.622
DOI:
.
文献标志码:
A
摘要:
针对捷联惯导姿态更新算法高精度、结构复杂度低的需求,为了满足常规武器工程化的需求,提出捷联惯导四元数的四阶龙格库塔姿态解算算法。根据载体初始姿态角确定姿态转换矩阵,由姿态转换矩阵确定四元数初值,用四阶龙格库塔法解四元数微分方程,更新四元数,从而根据四元数与姿态角之间对应关系解算弹体姿态角。120迫弹平台仿真结果验证了四阶龙格库塔姿态更新算法的正确性,姿态解算精度0.01°,开发实用化样机进行实际抛洒实验,结果表明,该算法切实可行,可工程化使用。
Abstract:
In order to meet the requirements of high precision and low structural complexity of strapdown inertial navigation attitude update algorithm, a fourth-order runge-kutta attitude solution algorithm of strapdown inertial navigation quaternion was proposed to meet the requirements of conventional weapon engineering. According to the initial attitude angle of the carrier, the attitude transformation matrix was determined, the initial value of the quaternion was determined by the attitude transformation matrix, the quaternion differential equation was solved by the fourth-order runge-kutta method, the quaternion was updated, and the attitude angle of the projectile body was solved according to the corresponding relationship between the quaternion and the attitude. Angle simulation results of forced projectile platform verified the correctness of fourth-order runge-kutta attitude update algorithm, and the accuracy of attitude solution was 10-2 degrees. A practical prototype was developed for practical spraying experiment, and the experiment proved that the algorithm was feasible and could be used in engineering.

参考文献/References:

[1]刘危,解旭辉,李圣怡.捷联惯性导航系统的姿态算法[J].北京航空航天学报,2005,31(1):45-50.
[2]张荣辉,贾宏光,陈涛.基于四元数法的捷联式惯性导航系统的姿态解算[J].光学精密工程,2008(10):1963-1970.
[3]王励杨,翟昆朋,何文涛,等.四阶龙格库塔算法在捷联惯性导航中的应用[J].计算机仿真,2014(11):56-59.
[4]郭访杜,于云峰,刘书盼.捷联惯导系统姿态算法研究[J].航天控制,2010,28(1):37-39.
[5]杜瑾,赵华超,郑哲,等.捷联惯导互补滤波姿态融合算法设计[J].传感技术学报,2018,31(10):1547-1552.
[6]王佳伟,梁轲,徐国泰,等.陀螺误差在线建模的递推最小二乘法系统辨识[J].探测与控制学报,2017,39(5):36-39.
[7]熊俊柳.基于SINS旋转矢量三子样定位算法的巡检机器人及其室内定位的研究[D].南昌:南昌大学,2018.
[8]李杰,杨雁宇,冯凯强,等.一种融合互补滤波和卡尔曼滤波高精度姿态测量算法[J].中国惯性技术学报,2018,26(1):51-55,86.
[9]段精婧,马铁华,范锦彪.基于无陀螺捷联惯导系统的四元数算法[J].探测与控制学报,2010,32(1):15-18.

相似文献/References:

[1]王海亮,石志勇,李国璋,等.一种可观测度分析方法及在匹配模式研究中的应用[J].探测与控制学报,2019,41(01):71.[doi:.]
 WANG Hailiang,SHI Zhiyong,LI Guozhang,et al.An Observability Analysis Method for Pattern Matching Research[J].,2019,41(03):71.[doi:.]

备注/Memo

备注/Memo:
收稿日期:2018-11-30
作者简介:史凯(1987—),男,陕西铜川人,博士研究生,工程师,研究方向:飞行器设计。E-mail:sky20041130@163.com。
更新日期/Last Update: 2019-07-11