[1]王旭光,陈红.α噪声环境下基于余弦代价函数的盲均衡算法[J].探测与控制学报,2019,41(01):87.[doi:.]
 WANG Xuguang,CHEN Hong.A Blind Equalization Algorithm Based on Cosine Cost Function[J].,2019,41(01):87.[doi:.]
点击复制

α噪声环境下基于余弦代价函数的盲均衡算法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
41
期数:
2019年01
页码:
87
栏目:
出版日期:
2019-03-15

文章信息/Info

Title:
A Blind Equalization Algorithm Based on Cosine Cost Function
文章编号:
1008-1194(2019)01-0087-05
作者:
王旭光陈红
国防科技大学电子对抗学院,安徽 合肥 230031
Author(s):
WANG XuguangCHEN Hong
Electronic Countermeasure Institute,National University of Defense Technology, Hefei 230037, China
关键词:
脉冲噪声盲均衡余弦代价函数变步长
Keywords:
impulse noise blind equalization cosine cost function variable step-size algorithm
分类号:
TN911
DOI:
.
文献标志码:
A
摘要:
针对无线通信系统中传统常模盲均衡算法(CMA)在脉冲噪声环境下适应性较差,难以有效收敛的问题,提出了基于余弦代价函数的自适应分数低阶盲均衡算法。该算法将改进的余弦代价函数代替分数低阶常模盲均衡算法(FLOSCMA)中的代价函数,不再需要已知原信号的统计模值,其适用性更广。仿真实验结果表明,与Floscma、CMA算法以及其它变步长算法相比,本文算法在收敛速率和稳态误差方面均有所改进。
Abstract:
Due to the large mean square error(MSE) and immerging in partial minimum easily for traditional constant modulus blind equalization algorithm(CMA) under impulse noise environment in wireless communication systems,we presented a new blind equalization algorithm based on improved cosine cost function and variable step-size algorithm. This algorithm replaced the traditional cost function with the improved cosine cost function, which made the algorithm get rid of the statistical model value of original signal. In order to balance the convergence speed and MSE, a new variable step-size algorithm was presented. Simulation results proved that, compared with Floscma、CMA and other variable step algorithm, the new algorithm improved both in convergence rate and MSE.

参考文献/References:

[1]丁锐.免疫优化算法在正交小波盲均衡中的应用研究[D].安徽:安徽理工大学, 2012.
[2]Johnson R,Schniter P, Endres T J, et al.Blind equalization using the constant modulus criterion: a review[J].Proceedings of the IEEE, 2002, 86(10):1927-1950.
[3]郭莹, 邱天爽, 唐洪,等.脉冲噪声环境下的恒模盲均衡算法[J].通信学报, 2009, 30(4):35-40.
[4]Fijalkow I, Touzni A, Treichler J R.Fractionally spaced equalization using CMA: robustness to channel noise and lack of disparity[J].IEEE Transactions on Signal Processing, 2002, 45(1):56-66.
[5]ChrysostomosL.Signal processing with alpha-stable distributions and applications[M].John Wiley & Sons,Inc, 1995.
[6]Rupi M, Tsakalides P, Re E D, et al.Constant modulus blind equalization based on fractional lower-order statistics[J].Signal Processing, 2004, 84(5):881-894.
[7]Li S,Qiu T S.Tracking performance analysis of fractional lower order constant modulus algorithm[J].Electronics Letters, 2009, 45(11):545-546.
[8]王慧杰, 李小兵, 于明秋.基于反比例函数的变步长雷达自适应滤波算法[J].探测与控制学报, 2017, 39(3):136-140.
[9]马济通, 邱天爽, 李蓉,等.基于概率密度函数匹配与分数低阶矩的并行盲均衡算法[J].电子与信息学报, 2017, 39(7):1532-1538.
[10]马济通, 邱天爽, 李蓉,等.脉冲噪声下基于Renyi熵的分数低阶双模盲均衡算法[J].电子与信息学报, 2018,40(2):378-385.
[11]饶伟.多径衰落环境中具有调制识别能力的盲均衡新算法[J].电子学报, 2013, 41(7):1284-1289.
[12]Hamidia M, Amrouche A.Improved variable step-size NLMS adaptive filtering algorithm for acoustic echo cancellation[J].Digital Signal Processing, 2016, 49(C):44-55.
[13]Gao,Qiu.A new variable step size CMA blind equalization algorithm[C]// Control and Decision Conference.IEEE, 2012:315-317.
[14]邓江波,侯新国.一种新的变步长LMS自适应算法及其性能分析[J].电声技术,2004(12): 4-6.

相似文献/References:

[1]王旭光,陈红,褚鼎立.基于改进布谷鸟算法的分数低阶盲均衡算法[J].探测与控制学报,2018,40(05):111.[doi:.]
 WANG Xuguang,CHEN Hong,CHU Dingli.A Fractional Lower Order Moment CMA Based on Improved Cuckoo Search[J].,2018,40(01):111.[doi:.]

备注/Memo

备注/Memo:
收稿日期:2018-08-13
作者简介:王旭光(1994—),男,山东莱芜人,硕士研究生,研究方向:通信信号处理与盲均衡。E-mail:602827989@qq.com。
更新日期/Last Update: 2019-03-28