[1]杨茂保,徐利亚,葛明珠,等.面向无人机网络的媒体接入控制协议[J].探测与控制学报,2018,40(04):126.[doi:.]
 YANG Maobao,XU Liya,GE Mingzhu,et al.A MAC Protocol for UAVs-based Wireless Networks[J].,2018,40(04):126.[doi:.]
点击复制

面向无人机网络的媒体接入控制协议()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
40
期数:
2018年04期
页码:
126
栏目:
出版日期:
2018-08-26

文章信息/Info

Title:
A MAC Protocol for UAVs-based Wireless Networks
文章编号:
1008-1194(2018)04-0126-07
作者:
杨茂保1徐利亚24葛明珠3陈希4舒长兴3
1.九江学院电子商务学院,江西 九江 332005;2.九江学院信息科学与技术学院,江西九江 332005;3.九江学院信息技术中心,江西 九江 332005;4.软件工程国家重点实验室,武汉大学计算机学院,湖北 武汉 430072
Author(s):
YANG Maobao1 XU Liya24 GE Mingzhu3CHEN Xi4 SHU Changxing3
1. Jiujiang University, Jiujiang 332005, China;2. State Key Lab of Software Engineering, Wuhan University, Wuhan 430072, China
关键词:
MAC协议长距离链路传播延迟敏感无线网络无人机
Keywords:
MAC protocol long-distance links propagation-delay awareness wireless networks UAVs
分类号:
TN929.5
DOI:
.
文献标志码:
A
摘要:
针对无人机数据链路长、传播延迟大的特点,提出了面向无人机网络的媒体接入控制(MAC)协议。该协议利用远距离无线链路传播延迟大的特点,实现了同一竞争域内多数据包的并发传输。以系统吞吐量最大化为目标,设计了一种无冲突的时隙分配算法,并从理论上分别分析了系统在饱和不饱和状态下的吞吐量。仿真及实验结果表明,该MAC协议的吞吐量要优于目前的动态TDMA以及IRSA协议,特别是在饱和情况下,且结果与理论分析吻合。
Abstract:
Based on long distance and large propagation delay of UAV wireless links, a medium access control protocol for UAVs-based wireless networks was designed. This MAC protocol utilized the large propagation delay to improve system throughput, which enabled multiple packets to transmit concurrently in one competing domain. A collision-free time slot allocation algorithm was designed to maximize the throughput. Besides, we theoretically analysed the throughput in different situations. Extensive simulation results showed that the proposed MAC protocol outperformed the other two competition protocols, dynamic TDMA and IRSA, especially in saturated situation. Meanwhile, the simulation results accorded with the theoretical analysis.

参考文献/References:

[1]Cruz H, Eckert M, Meneses J, et al. Efficient forest fire detection index for application in unmanned aerial systems (UASs)[J]. Sensors, 2016, 16(6): 893-908.
[2]Erdelj M, Natalizio E, Chowdhury K R, et al. Help from the sky: leveraging UAVs for disaster management[J]. IEEE Pervasive Computing, 2017, 16(1): 24-32.
[3]De Freitas E P, Heimfarth T, Netto I F, et al. UAV relay network to support WSN connectivity[C]// 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2010: 309-314.
[4]Sharma V, Bennis M, and Kumar R. UAV-assisted heterogeneous networks for capacity enhancement[J]. IEEE Communications Letters, 2016, 20(6): 1207-1210.
[5]Gupta L, Jain R, and Vaszkun G. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1123-1152.
[6]Jawhar I, Mohamed N, Al-Jaroodi J, et al. Communication and networking of UAV-based systems: Classification and associated architectures[J]. Journal of Network and Computer Applications, 2017,84: 93-108.
[7]Jo Y H, Yoon I S, Kim S U, et al. A Study on the MAC (Media Access Control) protocol for Unmanned Aerial Vehicle (UAV)[J]. The Journal of the Korea institute of electronic communication sciences, 2016, 11(1): 119-124.
[8]Bhagwat P, Raman B, Sanghi D. Turning 802.11 inside-out[J]. ACM SIGCOMM Computer Communication Review, 2004, 34(1): 33-38.
[9]Patra R K, Nedevschi S, Surana S, et al. WiLDNet: Design and Implementation of High Performance WiFi Based Long Distance Networks[C]// NSDI . 2007: 1-14.
[10]Salmerón-Ntutumu S, Simó-Reigadas J, Patra R. Comparison of MAC protocols for 802.11-based long distance networks[C]// Proceeding of Workshop Wireless For Development (WIRELESS4D). 2008: 1-10.
[11]Jang H, Kim E, Lee J J, et al. Location-Based TDMA MAC for Reliable Aeronautical Communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1848-1854.
[12]Temel S, Bekmezci I. LODMAC: Location oriented directional MAC protocol for FANETs[J]. Computer Networks, 2015, 83: 76-84.
[13]Araghizadeh M A, Teymoori P, Yazdani N, et al. An efficient medium access control protocol for WSN-UAV[J]. Ad Hoc Networks, 2016, 52: 146-159.
[14]Cai Y, Yu F R, Li J, et al. Medium access control for Unmanned Aerial Vehicle (UAV) Ad-hoc networks with full-duplex radios and multipacket reception capability[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 5-11.
[15]Alshbatat A I, Dong L. Adaptive MAC protocol for UAV communication networks using directional antennas[C]// 2010 International Conference on Networking, Sensing and Control (ICNSC). 2010: 598-603.
[16]Shrestha B, Choi K, Hossain E. A Dynamic Time Slot Allocation Scheme for Hybrid CSMA/TDMA MAC Protocol[J]. IEEE Wireless Commun, 2013, 2(5): 535-538.

相似文献/References:

[1]周倩,申晓红,修健.多帧确认及虚拟载波侦听的水声MACAW协议[J].探测与控制学报,2009,(02):28.
 ZHOU Qian,SHEN Xiao-hong,XIU Jian.MACAW Protocol for Underwater Acoustic Networks Based on Multi-frame Acknowledgement and Virtual Carrier Sense[J].,2009,(04):28.

备注/Memo

备注/Memo:
收稿日期:2018-01-16
基金项目:国家自然科学基金项目资助(61662039,61362032,61572370);江西省青年科学基金项目资助(20151BAB217015); 江西省教育厅科学技术研究项目资助( GJJ61678)
作者简介:杨茂保(1978—),男,山东新泰人,硕士,讲师,研究方向:智能计算,无线网络。E-mail: yangmaobao@163.com
更新日期/Last Update: 2018-09-14