[1]杨彦利,马德,权建峰.基于STFT和EMD的多普勒信号分离算法[J].探测与控制学报,2018,40(04):122.[doi:.]
 YANG Yanli,MA De,QUAN Jianfeng.A Doppler Signal Separation Algorithm Based on STFT and EMD[J].,2018,40(04):122.[doi:.]
点击复制

基于STFT和EMD的多普勒信号分离算法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
40
期数:
2018年04期
页码:
122
栏目:
出版日期:
2018-08-26

文章信息/Info

Title:
A Doppler Signal Separation Algorithm Based on STFT and EMD
文章编号:
1008-1194(2018)04-0122-04
作者:
杨彦利1马德1权建峰2
1.天津工业大学光电检测技术与系统重点实验室,天津 300387;2.西安机电信息技术研究所,陕西 西安 710065
Author(s):
YANG Yanli1MA De1QUAN Jianfeng2
1. Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Polytechnic University, Tianjin 300387, China; 2. Xi’an Institute of Electromechanical Information Technology, Xi’an 710065, China
关键词:
多普勒信号检测体目标效应瞬时频率短时傅里叶变换经验模态分解
Keywords:
Doppler signal detectioneffect of body target instantaneous frequency short-time Fourier transform empirical mode decomposition
分类号:
TN911.72
DOI:
.
文献标志码:
A
摘要:
针对近场区多普勒信号的识别问题,提出了基于短时傅里叶变换(STFT)和经验模态分解(EMD)的多普勒信号分离算法。该算法利用STFT时频分布,通过极值滤波法并结合EMD算法将回波信号分解成若干个窄带子信号,实现了对多普勒信号的分离和多普勒信号瞬时频率的估计。实测验证表明,该算法能够将频率成分相近的多普勒回波信号分解成若干个窄带的子信号,有助于实现对近场区多普勒信号的提取和识别。
Abstract:
To solve the near-field Doppler signal identification problem, a Doppler signal separation algorithm based on short-time Fourier transform (STFT) and empirical mode decomposition (EMD) was proposed. By using the time-frequency distribution of STFT, this algorithm decomposed the Doppler echo signal into several narrow-band sub-signals through the extreme filtering method combined with the EMD. Then, the Doppler signals separation and the instantaneous frequency estimation of Doppler signals were achieved. The experimental results showed that the proposed algorithm can decomposed the Doppler echo signals with similar frequency components into several narrow-band sub-signals, which was helpful to extract and recognize Doppler signals in the near-field region.

参考文献/References:

[1]刘战存. 多普勒和多普勒效应的起源[J]. 物理, 2003, 32(7): 488-491.
[2]袁昆, 曲家惠. 连续波多勒无线电引信的仿真和信号处理[J]. 沈阳理工大学学报, 2013, 32(1): 37-41.
[3]潘曦, 崔占忠. 无线电引信近场目标特性研究[J]. 兵工学报, 2008, 29(3): 277-281.
[4]张飞鹏, 郭东敏, 崔新. 时频分析方法提取对空近炸引信多普勒信号频率信息特征[J]. 探测与控制学报, 2003, 25(2): 39-41.
[5]乔飞, 杨小军, 马岸英. 基于小波分析的多普勒弱信号检测方法[J]. 探测与控制学报, 2008, 30(1): 48-52.
[6]杨彦利, 邓甲昊. 基于经验模态分解的多普勒信号提取[J]. 制导与引信, 2010, 31(3): 1-5.
[7]Huang N E, Shen Z, Long S R, et al., The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454: 903-995.
[8]王召利, 范文晶. 基于自适应滤波的瞬时频率测量新方法[J]. 制导与引信, 2013, 34(3): 41-46.
[9]ZhangH J, Bi G A, Yang W, et al. IF estimation of FM signals based on time-frequency image[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 326-343.
[10]Kwok H K, Jones D L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE Transactions on Signal Processing, 2000, 48(10): 2964-2972.
[11]Khan N A, Boashash B. Instantaneous frequency estimation of multicomponent nonstationary signals using multiview time-frequency distributions based on the adaptive fractional spectrogram[J]. IEEE Signal Processing Letters, 2013, 20(2): 157-160.
[12]Yang Y L, Yu T, An adaptive spectral kurtosis method based on optimal filter[J]. Shock and Vibration, 2017.
[13]Barkat B, Meraim K A. Algorithms for blind components separation and extraction from the time-frequency distribution of their mixture[J]. EURASIP Journal on Applied Signal Processing, 2004(13): 2025-2033.
[14]张飞鹏, 郭东敏. 短时傅立叶变换提取连续波多普勒体制对空无线电引信多普勒信号特征[J]. 探测与控制学报, 2004, 26(1): 18-20.
[15]李向军, 王新会, 赵耀军. 近炸引信终点弹道多普勒信号仿真平台[J]. 微波学报, 2012(8): 40-43.

备注/Memo

备注/Memo:
收稿日期:2018-02-13
基金项目:国家自然科学基金项目资助(61401305)
作者简介:杨彦利(1979—),男,河北行唐人,博士,副教授,研究方向:非平稳信号处理。E-mail: yyl070805@163.com
更新日期/Last Update: 2018-09-14