[1]董青,胡建旺,吉兵,等.杂波未知条件下基于箱粒子滤波的CBMeMBer算法[J].探测与控制学报,2018,40(04):103.[doi:.]
 DONG Qing,HU Jianwang,JI Bing,et al.A CBMeMBer Algorithm Based on Box Particle in Unknown Clutter Environment[J].,2018,40(04):103.[doi:.]
点击复制

杂波未知条件下基于箱粒子滤波的CBMeMBer算法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
40
期数:
2018年04期
页码:
103
栏目:
出版日期:
2018-08-26

文章信息/Info

Title:
A CBMeMBer Algorithm Based on Box Particle in Unknown Clutter Environment
文章编号:
1008-1194(2018)04-0103-06
作者:
董青1胡建旺1吉兵1张浩2
1.陆军工程大学石家庄校区信息工程系,河北 石家庄 050003;2.陆军西安军事代表局驻兰州和乌鲁木齐地区军代室,陕西 西安 710043
Author(s):
DONG Qing1 HU Jianwang1 JI Bing1 ZHANG Hao2
1.Department of Information Engineer, Army Engineering University, Shijiazhuang 050003 China; 2.Military Representative office of Xi’an Military Representative Bureau in Lanzhou and Wulumuqi, Xi’an 710043,China
关键词:
多目标跟踪箱粒子杂波未知区间分析势均衡多目标多伯努利
Keywords:
multiple target tracking box particle unknown clutter interval analysis cardinality balanced multi-target multi-Bernoulli
分类号:
TP391
DOI:
.
文献标志码:
A
摘要:
针对杂波未知条件下,传统的势均衡多目标多伯努利滤波器(CBMeMBer)的序贯蒙特卡洛实现跟踪精度不高,且所需粒子数目过大,导致跟踪效率低下的问题,引入区间分析理论,提出了杂波未知条件下基于箱粒子滤波技术的CBMeMBer算法。该算法构建目标和杂波的混合状态空间模型,基于箱粒子滤波技术,建立杂波模型,推导出目标预测、更新方程,用多目标箱粒子CBMeMBer递推表达式估计目标状态。仿真实验表明,在杂波模型先验已知或未知条件下,所提算法既保证了目标跟踪精度,又大幅度提高了算法的执行速率。
Abstract:
In unknown clutter environment, the traditional Sequential Monte Carlo(SMC) implementation of Cardinality Balanced multi-target multi-Bernoulli(CBMeMBer) filter cannot guarantee a good performance, and multitude number of particles leads to time consuming and low efficiency of tracking. Aiming at this problem, this paper introduced the theory of interval analysis, and proposed the CBMeMBer algorithm based on box particle filter in unknown clutter environment. Targets and clutter hybrid state space models were established, then, establishing clutter model and deriving the prediction equation and updating equation based on box particles. The state of multi-target was recursively estimated in utilization of CBMeMBer filter box particles. Simulation revealed that the proposed algorithm ensured tracking accuracy of target and greatly improved the algorithm’s execution speed under the prior known or unknown conditions of the clutter model.

参考文献/References:

[1]Bar-Shalom Y, Fortmann T E. Tracking and data association[M]. San Diego, CA: Academic, 1988: 1-34.
[2]Mahler R. Engineering statistics for multi-object tracking[J]. Signal and Data Processing of Small Targets, 2001, 4473: 53-60.
[3]Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
[4]Ulmke M, Erdinc O, Willett P. GMTI tracking via the Gaussian mixture cardinalized probability hypothesis density filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1821-1833.
[5]Mahler R. Statistical Multisource - Multitarget Information Fusion[M]. London: Artech House, 2007.
[6]Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423.
[7]Vo B T, Vo B N, Hoseinnezhad R, et al. Robust multi-Bernoulli filtering[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 7(3): 399-409.
[8]Amirali K, Reza H, Alireza B, Multi-Bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles[J]. Signal Processing, 2016, 119(C): 28-42.
[9]Abdallah F, Gning A, Bonnifait P. Box particle filtering for nonlinear state estimation using interval analysis[J]. Automatica,2008, 44(3): 807-815.
[10]Zhao X G, Song L P. Box-particle implementation for cardinality balanced multi-target multi-Bernoulli filter[C]//IEEE China Summit and InternationalConference on Signal and Information Processing. Beijing: IEEE, 2013.
[11]Zhao Xuegang, Song Liping. Box-particle cardinality balanced multi-target multi-Bernoulli filter[J]. Radioengineering, 2014, 23(2): 11-15.
[12]魏帅, 冯新喜, 王泉. 未知杂波状态下基于箱粒子滤波的PHD算法[J]. 探测与控制学报, 2017, 39(2): 94-99.
[13]魏帅, 冯新喜, 王泉, 等. 基于箱粒子滤波的鲁棒标签多伯努利跟踪算法[J]. 兵工学报, 2017, 38(10): 2062-2068.
[14]郑学弢. 复杂环境下基于随机集的多目标跟踪算法研究[D]. 西安: 西安电子科技大学, 2013.
[15]Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457.

相似文献/References:

[1]黄大羽,倪忠建,徐飞.基于多机编队有源组网探测的多目标跟踪算法[J].探测与控制学报,2015,(04):46.[doi:.]
 HUANG Dayu,NI Zhongjian,XU Fei.A Multi-target Tracking Algorithm based on Networking Detection of Multiple Airplanes[J].,2015,(04):46.[doi:.]
[2]赵凯,胡建旺,吉兵.后向预测高斯混合概率假设密度滤波算法[J].探测与控制学报,2017,39(03):118.[doi:.]
 ZHAO Kai,HU Jianwang,JI Bing.BP-GMPHD Filter Algorithm with Single-step-lag Out-of-sequence Measurement[J].,2017,39(04):118.[doi:.]
[3]王雪,李鸿艳,蒲磊,等.基于多普勒量测的UKF多目标跟踪方法[J].探测与控制学报,2018,40(02):104.[doi:.]
 WANG Xue,LI Hongyan,PU Lei,et al.UKF Multitarget Tracing with Doppler Information[J].,2018,40(04):104.[doi:.]
[4]魏帅,冯新喜,王泉.未知杂波状态下基于箱粒子滤波的PHD算法[J].探测与控制学报,2017,39(02):94.[doi:.]
 WEI Shuai,FENG Xinxi,WANG Quan.A PHD Algorithm Based on Box Particle in Unknown Clutter Environment[J].,2017,39(04):94.[doi:.]

备注/Memo

备注/Memo:
收稿日期:2018-01-24
作者简介:董青(1994—),女,陕西西安人,硕士研究生,研究方向:信息融合研究。E-mail: 15991947116@qq.com
更新日期/Last Update: 2018-09-14