[1]陈明建,黄中瑞,龙国庆,等.非平稳色噪声背景下非相关与相干信源数估计算法[J].探测与控制学报,2018,40(04):40.[doi:.]
 CHEN Mingjian,HUANG Zhongrui,LONG Guoqing,et al.Uncorrelated and Coherent Signals Number Estimationin in the Presence of Nonuniform Noise[J].,2018,40(04):40.[doi:.]
点击复制

非平稳色噪声背景下非相关与相干信源数估计算法()
分享到:

《探测与控制学报》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
40
期数:
2018年04期
页码:
40
栏目:
出版日期:
2018-08-26

文章信息/Info

Title:
Uncorrelated and Coherent Signals Number Estimationin in the Presence of Nonuniform Noise
文章编号:
1008-1194(2018)04-0040-07
作者:
陈明建黄中瑞龙国庆韩旭
国防科技大学电子对抗学院,合肥 安徽 230037
Author(s):
CHEN MingjianHUANG ZhongruiLONG GuoqingHAN Xu
Electronic Countermeasure Institute, National University of Defense Technology, Hefei 230037,China
关键词:
阵列信号处理相干信号信源数估计空间差分均匀线阵
Keywords:
array signal processing coherent signal source number detection spatial differencing uniform linear arrays
分类号:
TN911.7
DOI:
.
文献标志码:
A
摘要:
在空间色噪声背景下传统基于信息论准则的信源数估计算法性能将下降,且无法实现非相关信源与相干信源并存时信源数估计。针对该问题,提出了非平稳色噪声背景下非相关与相干信源数估计算法。该算法利用特征值总体最小二乘线性拟合,估计得到非相关信源和相干信源组数的联合估计,然后通过空间差分平滑剔除非相关信源,最后利用线性拟合技术实现相干信源数估计。仿真结果表明,与基于信息论准则的信源数估计算法相比,所提算法能实现非相关与相干信源数的联合估计,检测信源数可以超过阵元数,尤其对于角度相近的信源,信源数估计性能更优。
Abstract:
Most existing source enumeration techniques, which are based on information theoretic criteria, have a satisfactory performance under the circumstances of uncorrelated signals and white noise. In order to solve the problem that the performance degradation of information theory method under the circumstances of spatially non-stationary noise and the coexistence of uncorrelated and coherent signals, a new estimation method of signal source number was proposed. In the proposed method, the uncorrelated sources and coherent signal group number was firstly estimated based on the total least squares (TLS) fitting with the eigenvalues. Then the uncorrelated signals and nonuniform noise could be eliminated from spatial difference smoothing. Finally the number of coherent signals is estimated based on the TLS fitting method. Simulation results validated the effectiveness of the presented approach and it still has better performance even when the total number of incident sources exceeded that of array elements. By comparing with some conventional algorithms, the method could effectively improve the estimation performance for closely spaced sources.

参考文献/References:

[1]曹国侯, 宁强. 圆形传感器阵列运动多目标2D-DOA估计[J]. 兵器装备工程学报, 2016, 37(1): 78-81.
[2]Wax M, Kailath T. Detection of signals by information theoretic criteria[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1985, 33(2): 387-392.
[3]Huang L, Long T, Mao E, et al. MMSE-based MDL method for robust estimation of number of sources without eigendecomposition[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 4135-4142.
[4]Lu Z, Zoubir A M. Generalizedbayesian information criterion for source enumeration in array processing[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1470-1480.
[5]胡隽, 吴南润. 基于共轭倒序阵盖氏圆准则的相关信源数估计研究[J]. 探测与控制学报, 2007, 29(3): 16-20.
[6]马丁, 宋崇. 基于改进K-均值聚类信源数目估计算法[J]. 探测与控制学报, 2011, 33(1): 32-35.
[7]郭艺夺, 童宁宁, 张永顺, 等. 相关噪声下基于对角加载的相干信源DOA估计算法[J]. 系统工程与电子技术, 2009, 31(11): 2582-2586.
[8]Han K, Nehorai. A. Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 6118-6128.
[9]Aouada S, Transkov D, Heureuse N, et al. Application of the bootstrap to source detection in nonuniform noise[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Pennsylvania, USA: IEEE, 2005: 997-1000.
[10]TieJun Shan, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherentsignals[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1985, 33(4): 806-811.
[11]刘晓娣, 周新力, 肖金光. 基于空间平滑的单快拍波达方向估计算法[J]. 探测与控制学报, 2015, 37(6): 66-70.
[12]Pillai S U, Kwon B H. Forward/Backward spatial smoothing techniques for coherent signalidentification[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1989, 37(1): 8-15.
[13]Zhang L, Liu W. Robust beamforming for coherent signals based on the spatial smoothing technique[J]. Signal Processing, 2012, 92(11): 2747-2758.
[14]Ma X, Dong X, Xie Y. An improved spatial differencing method for DOA estimation with the coexistence of uncorrelated and coherent signals[J]. 2016, 16(10): 3719-3723.
[15]Qi C, Wang Y, Zhang Y, et al. Spatial difference smoothing for DOA estimation of coherentsignals[J]. IEEE Signal Processing Letters, 2005, 12(11): 800-802.
[16]Chen H, Hou C P, Wang Q, et al. Cumulants-based toeplitz matrices reconstruct-ion method for 2d coherent DOA estimation[J]. IEEE Sensors Journal, 2014, 14(8): 2824-2832.
[17]Ye Z, Xu X. DOA Estimation by exploiting the symmetric configuration of uniform lineararray[J]. IEEE Transactions on Antennas & Propagation, 2007, 55(12): 3716-3720.
[18]Chen F J, Kwong S, Kok C W. ESPRIT-like two-dimensional DOA estimation for coherent signals[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(3): 1477-1484.

相似文献/References:

[1]李涛,李国林,徐君民.一种实域空间平滑解相干算法[J].探测与控制学报,2011,(03):73.
 LI Tao,LI Guolin,XU Junmin.A Real Domain Spatial Smoothing Decorrelation Algorithm[J].,2011,(04):73.
[2]张彦军,栗苹.改进的全球卫星导航系统阵列抗干扰方法[J].探测与控制学报,2016,38(01):7.[doi:.]
 ZHANG Yanjun,LI Ping.An Improved Anti-jamming Method for Global Navigation Satellite System Arrays[J].,2016,38(04):7.[doi:.]
[3]黄超,张剑云,朱家兵,等.基于加权改进MUSIC算法的相干信号波达方向估计[J].探测与控制学报,2016,38(01):42.[doi:.]
 HUANG Chao,ZHANG Jianyun,ZHU Jiabing,et al.DOA Estimation of Coherent Signals Based on Weighted-modified MUSIC Algorithm[J].,2016,38(04):42.[doi:.]

备注/Memo

备注/Memo:
收稿日期:2018-01-16
基金项目:安徽省自然科学基金项目资助(1608085QF140)
作者简介:陈明建(1983—),男,博士,讲师,研究方向:阵列信号处理、雷达信号处理。E-mail: cdcmj@126.com
更新日期/Last Update: 2018-09-14